Search results for "Poynting vector"

showing 5 items of 5 documents

Striped Blandford/Znajek jets from advection of small-scale magnetic field

2020

Black hole - accretion disc systems are the central engines of relativistic jets from stellar to galactic scales. We numerically quantify the unsteady outgoing Poynting flux through the horizon of a rapidly spinning black hole endowed with a rotating accretion disc. The disc supports small-scale, concentric, flux tubes with zero net magnetic flux. Our General Relativistic force-free electrodynamics simulations follow the accretion onto the black hole over several hundred dynamical timescales in 3D. For the case of counter-rotating accretion discs, the average process efficiency reaches up to $\left\langle\epsilon\right\rangle\approx 0.43$, compared to a stationary energy extraction by the B…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetic fluxAccretion (astrophysics)Magnetic fieldBlack holeAstrophysical jetSpace and Planetary SciencePoynting vectorAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct

Dynamic Analysis for Axially Moving Viscoelastic Poynting–Thomson Beams

2015

This paper is concerned with dynamic characteristics of axially moving beams with the standard linear solid type material viscoelasticity. We consider the Poynting–Thomson version of the standard linear solid model and present the dynamic equations for the axially moving viscoelastic beam assuming that out-of-plane displacements are small. Characteristic behaviour of the beam is investigated by a classical dynamic analysis, i.e., we find the eigenvalues with respect to the beam velocity. With the help of this analysis, we determine the type of instability and detect how the behaviour of the beam changes from stable to unstable.

PhysicsPoynting vectorPhysics::Accelerator PhysicsMechanicsStandard linear solid modelAxial symmetryStability (probability)InstabilityEigenvalues and eigenvectorsViscoelasticityBeam (structure)
researchProduct

Relativistic MHD simulations of extragalactic jets

2005

We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the …

MHDAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICANose coneRelativitysymbols.namesakeMagnetohydrodynamicsAstrophysical jetJetsAdiabatic processEquipartition theoremMagnetohydrodynamics ; MHD ; numerical method ; Relativity ; Active galaxies ; JetsPhysicsnumerical methodAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Magnetic fieldComputational physicsLorentz factorClassical mechanicsSpace and Planetary SciencePoynting vectorsymbolsActive galaxiesMagnetohydrodynamicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Considerations on the electromagnetic flow in Airy beams based on the Gouy phase

2012

We reexamine the Gouy phase in ballistic Airy beams (AiBs). A physical interpretation of our analysis is derived in terms of the local phase velocity and the Poynting vector streamlines. Recent experiments employing AiBs are consistent with our results. We provide an approach which potentially applies to any finite-energy paraxial wave field that lacks a beam axis. This research was funded by the Spanish Ministry of Economy and Competitiveness under the project TEC2009-11635.

WavefrontPhysicsWave propagationbusiness.industryWave propagationParaxial approximationPhase (waves)Physics::OpticsModels TheoreticalAtomic and Molecular Physics and OpticsElectromagnetic FieldsOpticsClassical mechanicsPhaseDiffraction theoryPoynting vectorScattering RadiationComputer SimulationStreamlines streaklines and pathlinesPhase velocitybusinessAlgorithmsBeam (structure)Óptica
researchProduct

Diffusivity in force-free simulations of global magnetospheres

2021

Abstract: Assuming that the numerical diffusivity triggered by violations of the force-free electrodynamics constraints is a proxy for the physical resistivity, we examine its impact on the overall dynamics of force-free aligned pulsar magnetospheres endowed with an equatorial current sheet. We assess the constraint violations as a diffusivity source. The effects of modifications on electric fields used to restore force-free conditions are not confined to the equatorial current sheet, but modify the magnetospheric dynamics on timescales shorter than the pulsar rotational period. These corrections propagate especially via a channel that was unexplored, namely, changes induced to the electric…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFluxCharge densityFOS: Physical sciencesAstronomy and AstrophysicsThermal diffusivityLuminositysymbols.namesakeCurrent sheetMaxwell's equationsPulsarSpace and Planetary ScienceQuantum electrodynamicsPoynting vectorsymbolsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct